spring pulled const velo Sparisoma Viridi 2 mins read ·
October 8, 2024
A working note for system of two masses and one spring pulled with constant velocity
A mass m i m_i m i connected with mass m j m_j m j via a spring with constant k i j k_{ij} k ij and normal length l i j l_{ij} l ij . Position of m i m_i m i relative to m j m_j m j is
x i j = x i − x j (1) \tag{1}
x_{ij} = x_i - x_j
x ij = x i − x j ( 1 )
and the distance between mass m i m_i m i and m j m_j m j is
r i j = ( x i − x j ) 2 . (2) \tag{2}
r_{ij} = \sqrt{(x_i - x_j)^2}.
r ij = ( x i − x j ) 2 . ( 2 )
Notice that r i j r_{ij} r ij is always positive, while x i j x_{ij} x ij can be positive or negative.
Spring force on m i m_i m i due to m j m_j m j is
S i j = − k i j ( r i j − l i j ) u i j , (3) \tag{3}
S_{ij} = -k_{ij}(r_{ij} - l_{ij}) u_{ij},
S ij = − k ij ( r ij − l ij ) u ij , ( 3 )
where the unit vector is simple
u i j = x i − x j r i j . (4) \tag{4}
u_{ij} = \frac{x_i - x_j}{r_{ij}}.
u ij = r ij x i − x j . ( 4 )
Eqns (2) and (4) can be extended from this 1-d system to 2-d and 3-d systems.
Newton’s second law of motion
∑ F = m x ¨ (5) \tag{5}
\sum F = m\ddot{x}
∑ F = m x ¨ ( 5 )
and Eqn (3) will produce
m i x ¨ i = − k i j ( r i j − l i j ) u i j (6) \tag{6}
m_i \ddot{x}_i = -k_{ij}(r_{ij} - l_{ij}) u_{ij}
m i x ¨ i = − k ij ( r ij − l ij ) u ij ( 6 )
with u i j u_{ij} u ij and r i j r_{ij} r ij are given in Eqns (2) and (4).
Suppose that m i m_i m i is fixed and m j m_j m j is pulled with constant velocity v j v_j v j then position of m j m_j m j is simply
x j ( t ) = x j , 0 + v j t , (7) \tag{7}
x_j(t) = x_{j,0} + v_j t,
x j ( t ) = x j , 0 + v j t , ( 7 )
while position of m i m_i m i can be obtained after solving Eqn (6), which can be explcitly in the form of
x ¨ i = − k i j m i ( ( x i − x j ) 2 − l i j ) ( x i − x j ( x i − x j ) 2 ) . (8) \tag{8}
\ddot{x}_i = - \frac{k_{ij}}{m_i} \left( \sqrt{(x_i - x_j)^2} - l_{ij} \right) \left( \frac{x_i - x_j}{\sqrt{(x_i - x_j)^2}} \right).
x ¨ i = − m i k ij ( ( x i − x j ) 2 − l ij ) ( ( x i − x j ) 2 x i − x j ) . ( 8 )
With n n n is index of time t t t , advancement of t t t can be formulated as
t n + 1 = t n + Δ t (9) \tag{9}
t^{n + 1} = t^n + \Delta t
t n + 1 = t n + Δ t ( 9 )
with n = 0 , 1 , 2 , . . n = 0, 1, 2, .. n = 0 , 1 , 2 , .. . Eqn (7) is rewriten as
x j n + 1 = x j n + v j Δ t (10) \tag{10}
x_j^{n+1} = x_j^n + v_j \Delta t
x j n + 1 = x j n + v j Δ t ( 10 )
and also Eqn (8) as
x ¨ i n = − k i j m i ( ( x i n − x j n ) 2 − l i j ) ( x i n − x j n ( x i n − x j n ) 2 ) . (11) \tag{11}
\ddot{x}_i^n = - \frac{k_{ij}}{m_i} \left( \sqrt{(x_i^n - x_j^n)^2} - l_{ij} \right) \left( \frac{x_i^n - x_j^n}{\sqrt{(x_i^n - x_j^n)^2}} \right).
x ¨ i n = − m i k ij ( ( x i n − x j n ) 2 − l ij ) ( x i n − x j n ) 2 x i n − x j n . ( 11 )
Using Euler’s method new velocity of mass m i m_i m i can be calculated
x ˙ i n + 1 = x ˙ i n + x ¨ i n Δ t (12) \tag{12}
\dot{x}_i^{n+1} = \dot{x}_i^n + \ddot{x}_i^n \Delta t
x ˙ i n + 1 = x ˙ i n + x ¨ i n Δ t ( 12 )
and also its new position
x i n + 1 = x i n + x ˙ i n Δ t . (13) \tag{13}
x_i^{n+1} = x_i^n + \dot{x}_i^n \Delta t.
x i n + 1 = x i n + x ˙ i n Δ t . ( 13 )
And
x j 0 , x i 0 , t 0 (14) \tag{14}
x_j^0, \ \ x_i^0, \ \ t^0
x j 0 , x i 0 , t 0 ( 14 )
are the initial conditions. Simulation can be performed using Eqns (9) – (14). Additional initial condition can also be applied, e.g. if the spring is in its normal length, then
x i 0 = x j + l i j (15) \tag{15}
x_i^0 = x_j^ + l_{ij}
x i 0 = x j + l ij ( 15 )
should hold.