s-3m-2s 1-d Sparisoma Viridi 2 mins read ·
October 8, 2024
A working note for system of three masses and two spring
Suppose there are three masses m 1 m_1 m 1 , m 2 m_2 m 2 , m 3 m_3 m 3 and two springs with constant k k k , that are put in series. Then using Newton’s second law of motion we can have
m 1 x ¨ 1 = − k ( x 1 − x 2 ) − k l 0 , (1) \tag{1}
m_1 \ddot{x}_1 = -k(x_1 - x_2) - k l_0,
m 1 x ¨ 1 = − k ( x 1 − x 2 ) − k l 0 , ( 1 )
m 2 x ¨ 2 = − k ( x 2 − x 1 ) − k ( x 2 − x 3 ) , (2) \tag{2}
m_2 \ddot{x}_2 = -k(x_2 - x_1) - k(x_2 - x_3),
m 2 x ¨ 2 = − k ( x 2 − x 1 ) − k ( x 2 − x 3 ) , ( 2 )
m 3 x ¨ 2 = − k ( x 3 − x 2 ) + k l 0 , (3) \tag{3}
m_3 \ddot{x}_2 = -k(x_3 - x_2) + k l_0,
m 3 x ¨ 2 = − k ( x 3 − x 2 ) + k l 0 , ( 3 )
where x 3 > x 2 > x 1 x_3 > x_2 > x_1 x 3 > x 2 > x 1 . Previous equations can be presented in matrix form as follow
[ x ¨ 1 x ¨ 2 x ¨ 3 ] = [ − k k 0 k − 2 k k 0 k − k ] [ x 1 x 2 x 3 ] + [ − k l 0 0 k l 0 ] (4) \tag{4}
\left[
\begin{matrix}
\ddot{x}_1 \newline
\ddot{x}_2 \newline
\ddot{x}_3 \newline
\end{matrix}
\right] = \left[
\begin{matrix}
-k & k & 0 \newline
k & -2k & k \newline
0 & k & -k \newline
\end{matrix}
\right] \left[
\begin{matrix}
x_1 \newline
x_2 \newline
x_3 \newline
\end{matrix}
\right] + \left[
\begin{matrix}
-k l_0 \newline
0 \newline
k l_0 \newline
\end{matrix}
\right]
x ¨ 1 x ¨ 2 x ¨ 3 = − k k 0 k − 2 k k 0 k − k x 1 x 2 x 3 + − k l 0 0 k l 0 ( 4 )
and generalized as
[ x ¨ 1 x ¨ 2 x ¨ 3 ⋮ x ¨ n − 2 x ¨ n − 1 x ¨ n ] = [ − k k 0 ⋯ 0 0 0 k − 2 k k ⋯ 0 0 0 0 k − 2 k ⋯ 0 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 0 0 ⋯ − 2 k k 0 0 0 0 ⋯ k − 2 k k 0 0 0 ⋯ 0 k − k ] [ x 1 x 2 x 3 ⋮ x n − 2 x n − 1 x n ] + [ − k l 0 0 0 ⋮ 0 0 k l 0 ] (5) \tag{5}
\left[
\begin{matrix}
\ddot{x}_1 \newline
\ddot{x}_2 \newline
\ddot{x}_3 \newline
\vdots \newline
\ddot{x} _{n-2} \newline
\ddot{x} _{n-1} \newline
\ddot{x}_n \newline
\end{matrix}
\right] = \left[
\begin{matrix}
-k & k & 0 & \cdots & 0 & 0 & 0 \newline
k & -2k & k & \cdots & 0 & 0 & 0 \newline
0 & k & -2k & \cdots & 0 & 0 & 0 \newline
\vdots & \vdots & \vdots & \ddots &\vdots & \vdots & \vdots \newline
0 & 0 & 0 & \cdots & -2k & k & 0 \newline
0 & 0 & 0 & \cdots & k & -2k & k \newline
0 & 0 & 0 & \cdots & 0 & k & -k \newline
\end{matrix}
\right] \left[
\begin{matrix}
x_1 \newline
x_2 \newline
x_3 \newline
\vdots \newline
x _{n-2} \newline
x _{n-1} \newline
x_n \newline
\end{matrix}
\right] + \left[
\begin{matrix}
-k l_0 \newline
0 \newline
0 \newline
\vdots \newline
0 \newline
0 \newline
k l_0 \newline
\end{matrix}
\right]
x ¨ 1 x ¨ 2 x ¨ 3 ⋮ x ¨ n − 2 x ¨ n − 1 x ¨ n = − k k 0 ⋮ 0 0 0 k − 2 k k ⋮ 0 0 0 0 k − 2 k ⋮ 0 0 0 ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ 0 0 0 ⋮ − 2 k k 0 0 0 0 ⋮ k − 2 k k 0 0 0 ⋮ 0 k − k x 1 x 2 x 3 ⋮ x n − 2 x n − 1 x n + − k l 0 0 0 ⋮ 0 0 k l 0 ( 5 )
The most right term in Eqn (5) can not be neglected if the displacement is large .