equivalent strain

  • It is a scalar representation of strain tensor

    $$\tag{1} \begin{array}{rcl} \displaystyle \varepsilon_{\rm eqv} & = & \displaystyle \frac{1}{1 + \nu} \left[ \frac{1}{2} (\varepsilon _{xx} - \varepsilon _{yy})^2 + \frac{1}{2} (\varepsilon _{yy} - \varepsilon _{zz})^2 \right. \newline \newline & & \displaystyle \left.

    • \frac{1}{2} (\varepsilon _{zz} - \varepsilon _{xx})^2 + 3(\varepsilon _{xy}^2 + \varepsilon _{yz}^2 + \varepsilon _{zx}^2) \right] ^{1/2} \end{array} $$
    and a straightforward variable reporting strain results over a body.
Dragana Jandric, "Mechanical Strain in Deformation Analysis – Lesson 5: Evaluating Strain Results", Ansys, 23 May 2020 (), url https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2020/05/Lesson-5-Evaluate-Strain-Results.pdf [20250131].