pasir

binary plot2 pasir

Sparisoma Viridi
1 min read ·

Introduction to Pasir 0.0.5 in how to generate artificial datasets with two features for binary classification.

Info:

Sketch:

f(x)={1,x>0,0,x0.(1)\tag{1} f(x) = \left\{ \begin{matrix} 1, & x > 0, \newline 0, & x \le 0. \end{matrix} \right.

f(x)=(c00)+(c10x+c01y)+(c20x2+c11xy+c02y2)+(c30x3+c21x2y+c12xy2+c03y3)++(cn0xn+cn1,1xn1y++c1,n1xyn1+c0nyn)(2)\tag{2} \begin{array}{rcl} f(x) & = & (c _{00}) \newline & + & (c _{10} x + c _{01} y) \newline & + & (c _{20} x^2 + c _{11} xy + c _{02} y^2) \newline & + & (c _{30} x^3 + c _{21} x^2y + c _{12} xy^2 + c _{03} y^3) \newline & + & \dots \newline & + & (c _{n0} x^n + c _{n-1,1} x^{n-1}y + \dots + c _{1,n-1} xy^{n-1} + c _{0n} y^n) \end{array}

c00+c10x+c01y=0.(3)\tag{3} c _{00} + c _{10} x + c _{01} y = 0.

(c00)+(c10x+c01y)+(c20x2+c11xy+c02y2)=0.(4)\tag{4} (c _{00}) + (c _{10} x + c _{01} y) + (c _{20} x^2 + c _{11} xy + c _{02} y^2) = 0.

Tags: