nou

fourier decomposition example

7 mins read ·

Fourier decomposition example: Three terms – constant, cosine, sine.

integral identities xx

0Lsin(m2πLx)sin(n2πLx) dx={0,mn,12L,m=n.(1)\tag{1} \int_0^L \sin \left( m \frac{2\pi}{L} x \right) \sin \left( n \frac{2\pi}{L} x \right) \ dx = \left\{ \begin{array}{rcl} 0, & m \ne n, \newline \tfrac12 L, & m = n. \end{array} \right.

 

0Lcos(m2πLx)cos(n2πLx) dx={0,mn,12L,m=n.(2)\tag{2} \int_0^L \cos \left( m \frac{2\pi}{L} x \right) \cos \left( n \frac{2\pi}{L} x \right) \ dx = \left\{ \begin{array}{rcl} 0, & m \ne n, \newline \tfrac12 L, & m = n. \end{array} \right.

 

0Lcos(m2πLx)sin(n2πLx) dt=0.(3)\tag{3} \int_0^L \cos \left( m \frac{2\pi}{L} x \right) \sin \left( n \frac{2\pi}{L} x \right) \ dt = 0.

 

0Lcos(m2πLx) dt=0.(3b)\tag{3b} \int_0^L \cos \left( m \frac{2\pi}{L} x \right) \ dt = 0.

 

0Lsin(n2πLx) dt=0.(3c)\tag{3c} \int_0^L \sin \left( n \frac{2\pi}{L} x \right) \ dt = 0.

coefficients xx

f(x)=m=1amcos[m(2πL)x]+m=1bmsin[m(2πL)x]+c0(4)\tag{4} f(x) = \sum_{m=1}^\infty a_m \cos \left[ m \left( \frac{2\pi}{L} \right) x \right] + \sum_{m=1}^\infty b_m \sin \left[ m \left( \frac{2\pi}{L} \right) x \right] + c_0

am=2L0Lf(x) cos[m(2πL)x] dx(5)\tag{5} a_m = \frac{2}{L}\int_0^L f(x) \ \cos \left[ m \left( \frac{2\pi}{L} \right) x \right] \ dx

bm=2L0Lf(x) sin[m(2πL)x] dx(6)\tag{6} b_m = \frac{2}{L}\int_0^L f(x) \ \sin \left[ m \left( \frac{2\pi}{L} \right) x \right] \ dx

c0=1L0Lf(x) dx.(7)\tag{7} c_0 = \frac{1}{L} \int_0^L f(x) \ dx.

km=m2πL,    m=1,2,3,..(8)\tag{8} k_m = m \frac{2\pi}{L}, \ \ \ \ m = 1, 2, 3, ..

integral identities tt

0Tsin(m2πTt)sin(n2πTt) dt={0,mn,12T,m=n.(9)\tag{9} \int_0^T \sin \left( m \frac{2\pi}{T} t \right) \sin \left( n \frac{2\pi}{T} t \right) \ dt = \left\{ \begin{array}{rcl} 0, & m \ne n, \newline \tfrac12 T, & m = n. \end{array} \right.

 

0Tcos(m2πTt)cos(n2πTt) dt={0,mn,12T,m=n.(10)\tag{10} \int_0^T \cos \left( m \frac{2\pi}{T} t \right) \cos \left( n \frac{2\pi}{T} t \right) \ dt = \left\{ \begin{array}{rcl} 0, & m \ne n, \newline \tfrac12 T, & m = n. \end{array} \right.

 

0Tcos(m2πTt)sin(n2πTt) dt=0.(11)\tag{11} \int_0^T \cos \left( m \frac{2\pi}{T} t \right) \sin \left( n \frac{2\pi}{T} t \right) \ dt = 0.

 

0Tcos(m2πTt) dt=0.(11b)\tag{11b} \int_0^T \cos \left( m \frac{2\pi}{T} t \right) \ dt = 0.

 

0Tsin(n2πTt) dt=0.(11c)\tag{11c} \int_0^T \sin \left( n \frac{2\pi}{T} t \right) \ dt = 0.

coefficients tt

f(t)=m=1amcos[m(2πT)t]+m=1bmsin[m(2πT)t]+c0(12)\tag{12} f(t) = \sum_{m=1}^\infty a_m \cos \left[ m \left( \frac{2\pi}{T} \right) t \right] + \sum_{m=1}^\infty b_m \sin \left[ m \left( \frac{2\pi}{T} \right) t \right] + c_0

am=2T0Tf(t) cos[m(2πT)t] dt(13)\tag{13} a_m = \frac{2}{T}\int_0^T f(t) \ \cos \left[ m \left( \frac{2\pi}{T} \right) t \right] \ dt

bm=2T0Tf(t) sin[m(2πT)t] dt(14)\tag{14} b_m = \frac{2}{T}\int_0^T f(t) \ \sin \left[ m \left( \frac{2\pi}{T} \right) t \right] \ dt

c0=1T0Tf(t) dt.(15)\tag{15} c_0 = \frac{1}{T} \int_0^T f(t) \ dt.

ωm=m2πT,    m=1,2,3,..(16)\tag{16} \omega_m = m \frac{2\pi}{T}, \ \ \ \ m = 1, 2, 3, ..

example

f(t)=2+5cos20πt+3sin8πt.(17)\tag{17} f(t) = 2 + 5 \cos 20 \pi t + 3 \sin 8 \pi t.

 

f(t)=2+5cos(2π0.1t)+3sin(2π0.25t)=2+5cos(102π1t)+3sin(42π1t)(18)\tag{18} \begin{array}{rcl} f(t) & = & \displaystyle 2 + 5 \cos \left( \frac{2\pi}{0.1} t \right) + 3 \sin \left( \frac{2\pi}{0.25} t \right) \newline \newline & = & \displaystyle 2 + 5 \cos \left( 10 \frac{2\pi}{1} t \right) + 3 \sin \left( 4 \frac{2\pi}{1} t \right) \end{array}

consine terms coefficients

am=2T0T2 cos[m(2πT)t] dt+2T0T5cos(102π1t) cos[m(2π1)t] dt+2T0T3sin(42π1t) cos[m(2π1)t] dt=0+2T12T5δ10,m+0  =  5δ10,m.(19)\tag{19} \begin{array}{rcl} a_m & = & \displaystyle \frac{2}{T}\int_0^T 2 \ \cos \left[ m \left( \frac{2\pi}{T} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 5 \cos \left( 10 \frac{2\pi}{1} t \right) \ \cos \left[ m \left( \frac{2\pi}{1} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 3 \sin \left( 4 \frac{2\pi}{1} t \right) \ \cos \left[ m \left( \frac{2\pi}{1} \right) t \right] \ dt \newline \newline & = & \displaystyle 0 + \frac{2}{T} \tfrac{1}{2} T 5 \delta_{10,m} + 0 \ \ = \ \ 5 \delta_{10,m}. \end{array}

am=0,0<m<10,a10=5,am=0,10<m.(19b)\tag{19b} \begin{array}{rl} a_m = 0, & 0 < m < 10, \newline a_{10} = 5, & \newline a_m = 0, & 10 < m. \end{array}

sine terms coefficients

bm=2T0T2 sin[m(2πT)t] dt+2T0T5cos(102π1t) sin[m(2π1)t] dt+2T0T3sin(42π1t) sin[m(2π1)t] dt=0+0+2T12T3δ4,m  =  3δ4,m.(20)\tag{20} \begin{array}{rcl} b_m & = & \displaystyle \frac{2}{T}\int_0^T 2 \ \sin \left[ m \left( \frac{2\pi}{T} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 5 \cos \left( 10 \frac{2\pi}{1} t \right) \ \sin \left[ m \left( \frac{2\pi}{1} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 3 \sin \left( 4 \frac{2\pi}{1} t \right) \ \sin \left[ m \left( \frac{2\pi}{1} \right) t \right] \ dt \newline \newline & = & \displaystyle 0 + 0 + \frac{2}{T} \tfrac{1}{2} T 3 \delta_{4,m} \ \ = \ \ 3 \delta_{4,m}. \end{array}

bm=0,0<m<4,b4=3,bm=0,4<m.(20b)\tag{20b} \begin{array}{rl} b_m = 0, & 0 < m < 4, \newline b_{4} = 3, & \newline b_m = 0, & 4 < m. \end{array}

constant term

c0=1T0T2 dt+1T0T5cos(102π1t) dt+1T0T3sin(42π1t) dt=2+0+0  =  2.(21)\tag{21} \begin{array}{rcl} c_0 & = & \displaystyle \frac{1}{T}\int_0^T 2 \ dt \newline \newline & + & \displaystyle \frac{1}{T}\int_0^T 5 \cos \left( 10 \frac{2\pi}{1} t \right) \ dt \newline \newline & + & \displaystyle \frac{1}{T}\int_0^T 3 \sin \left( 4 \frac{2\pi}{1} t \right) \ dt \newline \newline & = & \displaystyle 2 + 0 + 0 \ \ = \ \ 2. \end{array}

function f(t)f(t)

f(t)=m=1amcos[m(2π1)t]+m=1bmsin[m(2π1)t]+c0(12)\tag{12} f(t) = \sum_{m=1}^\infty a_m \cos \left[ m \left( \frac{2\pi}{1} \right) t \right] + \sum_{m=1}^\infty b_m \sin \left[ m \left( \frac{2\pi}{1} \right) t \right] + c_0

f(t)=a10cos[10(2π1)t]+b4sin[4(2π1)t]+c0=5cos[10(2π1)t]+3sin[4(2π1)t]+2.(22)\tag{22} \begin{array}{rcl} f(t) & = & \displaystyle a_{10} \cos \left[ 10 \left( \frac{2\pi}{1} \right) t \right] + b_4 \sin \left[ 4 \left( \frac{2\pi}{1} \right) t \right] + c_0 \newline \newline & = & \displaystyle 5 \cos \left[ 10 \left( \frac{2\pi}{1} \right) t \right] + 3 \sin \left[ 4 \left( \frac{2\pi}{1} \right) t \right] + 2. \end{array}

 

f(t)=2+5cos20πt+3sin8πt.(17)\tag{17} f(t) = 2 + 5 \cos 20 \pi t + 3 \sin 8 \pi t.

f1=2 Hzf_1 = 2 \ \rm Hz

f(t)=2+5cos20πt+3sin8πt.(17)\tag{17} f(t) = 2 + 5 \cos 20 \pi t + 3 \sin 8 \pi t.

 

f(t)=2+5cos(2π0.1t)+3sin(2π0.25t)=2+5cos(52π0.5t)+3sin(22π0.5t)(23)\tag{23} \begin{array}{rcl} f(t) & = & \displaystyle 2 + 5 \cos \left( \frac{2\pi}{0.1} t \right) + 3 \sin \left( \frac{2\pi}{0.25} t \right) \newline \newline & = & \displaystyle 2 + 5 \cos \left( 5 \frac{2\pi}{0.5} t \right) + 3 \sin \left( 2 \frac{2\pi}{0.5} t \right) \end{array}

consine terms coefficients

am=1T0T2 cos[m(2π0.5)t] dt+2T0T5cos(52π0.5t) cos[m(2π0.5)t] dt+2T0T3sin(22π0.5t) cos[m(2π0.5)t] dt=0+2T12T5δ10,m+0  =  5δ5,m.(24)\tag{24} \begin{array}{rcl} a_m & = & \displaystyle \frac{1}{T}\int_0^T 2 \ \cos \left[ m \left( \frac{2\pi}{0.5} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 5 \cos \left( 5 \frac{2\pi}{0.5} t \right) \ \cos \left[ m \left( \frac{2\pi}{0.5} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 3 \sin \left( 2 \frac{2\pi}{0.5} t \right) \ \cos \left[ m \left( \frac{2\pi}{0.5} \right) t \right] \ dt \newline \newline & = & \displaystyle 0 + \frac{2}{T} \tfrac{1}{2} T 5 \delta_{10,m} + 0 \ \ = \ \ 5 \delta_{5,m}. \end{array}

am=0,0<m<5,a5=5,am=0,5<m.(24b)\tag{24b} \begin{array}{rl} a_m = 0, & 0 < m < 5, \newline a_{5} = 5, & \newline a_m = 0, & 5 < m. \end{array}

sine terms coefficients

bm=1T0T2 sin[m(2π0.5)t] dt+2T0T5cos(52π0.5t) sin[m(2π0.5)t] dt+2T0T3sin(22π0.5t) sin[m(2π0.5)t] dt=0+0+2T12T3δ4,m  =  3δ2,m.(25)\tag{25} \begin{array}{rcl} b_m & = & \displaystyle \frac{1}{T}\int_0^T 2 \ \sin \left[ m \left( \frac{2\pi}{0.5} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 5 \cos \left( 5 \frac{2\pi}{0.5} t \right) \ \sin \left[ m \left( \frac{2\pi}{0.5} \right) t \right] \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 3 \sin \left( 2 \frac{2\pi}{0.5} t \right) \ \sin \left[ m \left( \frac{2\pi}{0.5} \right) t \right] \ dt \newline \newline & = & \displaystyle 0 + 0 + \frac{2}{T} \tfrac{1}{2} T 3 \delta_{4,m} \ \ = \ \ 3 \delta_{2,m}. \end{array}

bm=0,0<m<2,b2=3,bm=0,2<m.(25b)\tag{25b} \begin{array}{rl} b_m = 0, & 0 < m < 2, \newline b_{2} = 3, & \newline b_m = 0, & 2 < m. \end{array}

constant term

c0=1T0T2 dt+2T0T5cos(52π0.5t) dt+2T0T3sin(22π0.5t) dt=2+0+0  =  2.(26)\tag{26} \begin{array}{rcl} c_0 & = & \displaystyle \frac{1}{T}\int_0^T 2 \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 5 \cos \left( 5 \frac{2\pi}{0.5} t \right) \ dt \newline \newline & + & \displaystyle \frac{2}{T}\int_0^T 3 \sin \left( 2 \frac{2\pi}{0.5} t \right) \ dt \newline \newline & = & \displaystyle 2 + 0 + 0 \ \ = \ \ 2. \end{array}

function f(t)f(t)

f(t)=m=1amcos[m(2π0.5)t]+m=1bmsin[m(2π0.5)t]+c0(12)\tag{12} f(t) = \sum_{m=1}^\infty a_m \cos \left[ m \left( \frac{2\pi}{0.5} \right) t \right] + \sum_{m=1}^\infty b_m \sin \left[ m \left( \frac{2\pi}{0.5} \right) t \right] + c_0

f(t)=a5cos[5(2π0.5)t]+b2sin[2(2π0.5)t]+c0=5cos[5(2π0.5)t]+3sin[2(2π0.5)t]+2.(27)\tag{27} \begin{array}{rcl} f(t) & = & \displaystyle a_{5} \cos \left[ 5 \left( \frac{2\pi}{0.5} \right) t \right] + b_2 \sin \left[ 2 \left( \frac{2\pi}{0.5} \right) t \right] + c_0 \newline \newline & = & \displaystyle 5 \cos \left[ 5 \left( \frac{2\pi}{0.5} \right) t \right] + 3 \sin \left[ 2 \left( \frac{2\pi}{0.5} \right) t \right] + 2. \end{array}

 

f(t)=2+5cos20πt+3sin8πt.(17)\tag{17} f(t) = 2 + 5 \cos 20 \pi t + 3 \sin 8 \pi t.

refs

Tags: