nou

fourier series short intro

7 mins read ·

Fourier series short intro: Proofs of some integral identities.

int sin

ππsinmx dx=[1mcosmx]ππ=1m[cosmπcosm(π)]=1m(cosmπcosmπ)=0.(21)\tag{21} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin mx \ dx & = & \displaystyle \left[ -\frac{1}{m} \cos mx \right]_{-\pi}^\pi \newline \newline & = & \displaystyle -\frac{1}{m} \left[ \cos m \pi - \cos m(-\pi) \right] \newline \newline & = & \displaystyle -\frac{1}{m} ( \cos m \pi - \cos m \pi ) \newline \newline & = & 0. \end{array}

int cos

ππcosmx dx=[1msinmx]ππ=1m[sinmπsinm(π)]=1m(sinmπ+sinmπ)=1m(0+0)  =  0.(22)\tag{22} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \cos mx \ dx & = & \displaystyle \left[ -\frac{1}{m} \sin mx \right]_{-\pi}^\pi \newline \newline & = & \displaystyle -\frac{1}{m} \left[ \sin m \pi - \sin m(-\pi) \right] \newline \newline & = & \displaystyle -\frac{1}{m} ( \sin m \pi + \sin m \pi ) \newline \newline & = & \displaystyle -\frac{1}{m} ( 0 + 0 ) \ \ = \ \ 0. \newline \newline \end{array}

int sin · sin, aba \ne b

sinaxsinbx=12cos(axbx)12cos(ax+bx)=12cos(ab)x12cos(a+b)x(23a)\tag{23a} \begin{array}{rcl} \sin ax \sin bx & = & \frac12 \cos (ax - bx) - \frac12 \cos (ax + bx) \newline \newline & = & \frac12 \cos (a - b)x - \frac12 \cos (a + b)x \end{array}

ππsinaxsinbx dx=12ππcos(ab)x dx12ππcos(a+b)x dx=12ππcosnx dx12ππcosmx dx=00  =  0.(23b)\tag{23b} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin ax \sin bx \ dx & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \cos (a - b)x \ dx \newline \newline & & \displaystyle - \tfrac12 \int_{-\pi}^\pi \cos (a + b)x \ dx \newline \newline & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \cos nx \ dx - \tfrac12 \int_{-\pi}^\pi \cos mx \ dx \newline \newline & = & 0 - 0 \ \ = \ \ 0. \end{array}

int cos · cos; sin, aba \ne b

cosaxcosbx=12cos(ax+bx)+12cos(axbx)=12cos(a+b)x+12cos(ab)x(24a)\tag{24a} \begin{array}{rcl} \cos ax \cos bx & = & \frac12 \cos (ax + bx) + \frac12 \cos (ax - bx) \newline \newline & = & \frac12 \cos (a + b)x + \frac12 \cos (a - b)x \end{array}

ππcosaxcosbx dx=12ππcos(a+b)x dx+12ππcos(ab)x dx=12ππcosmx dx+12ππcosnx dx=0+0  =  0.(24b)\tag{24b} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \cos ax \cos bx \ dx & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \cos (a + b)x \ dx \newline \newline & & \displaystyle + \tfrac12 \int_{-\pi}^\pi \cos (a - b)x \ dx \newline \newline & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \cos mx \ dx + \tfrac12 \int_{-\pi}^\pi \cos nx \ dx \newline \newline & = & 0 + 0 \ \ = \ \ 0. \end{array}

int sin · cos; sin, aba \ne b

sinaxcosbx=12sin(ax+bx)+12sin(axbx)=12sin(a+b)x+12sin(ab)x(25a)\tag{25a} \begin{array}{rcl} \sin ax \cos bx & = & \frac12 \sin (ax + bx) + \frac12 \sin (ax - bx) \newline \newline & = & \frac12 \sin (a + b)x + \frac12 \sin (a - b)x \end{array}

ππsinaxcosbx dx=12ππsin(a+b)x dx+12ππsin(ab)x dx=12ππsinmx dx+12ππsinnx dx=0+0  =  0.(25b)\tag{25b} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin ax \cos bx \ dx & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \sin (a + b)x \ dx \newline \newline & & \displaystyle + \tfrac12 \int_{-\pi}^\pi \sin (a - b)x \ dx \newline \newline & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \sin mx \ dx + \tfrac12 \int_{-\pi}^\pi \sin nx \ dx \newline \newline & = & 0 + 0 \ \ = \ \ 0. \end{array}

int sin · sin, a=ba = b

sinaxsinax=12cos(axax)12cos(ax+ax)=1212cos2ax(26a)\tag{26a} \begin{array}{rcl} \sin ax \sin ax & = & \frac12 \cos (ax - ax) - \frac12 \cos (ax + ax) \newline \newline & = & \frac12 - \frac12 \cos 2ax \end{array}

ππsinaxsinax dx=12ππdx12ππcos2ax dx=12ππdx12ππcosmx dx=π0  =  π.(26b)\tag{26b} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin ax \sin ax \ dx & = & \displaystyle \tfrac12 \int_{-\pi}^\pi dx - \tfrac12 \int_{-\pi}^\pi \cos 2ax \ dx \newline \newline & = & \displaystyle \tfrac12 \int_{-\pi}^\pi dx - \tfrac12 \int_{-\pi}^\pi \cos mx \ dx \newline \newline & = & \pi - 0 \ \ = \ \ \pi. \end{array}

int cos · cos; sin, a=ba = b

cosaxcosax=12cos(ax+ax)+12cos(axax)=12cos2ax+12(27a)\tag{27a} \begin{array}{rcl} \cos ax \cos ax & = & \frac12 \cos (ax + ax) + \frac12 \cos (ax - ax) \newline \newline & = & \frac12 \cos 2ax + \frac12 \end{array}

ππcosaxcosbx dx=12ππcos2ax dx+12ππdx=12ππcosmx dx+12ππdx=0+π  =  π.(27b)\tag{27b} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \cos ax \cos bx \ dx & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \cos 2ax \ dx + \tfrac12 \int_{-\pi}^\pi dx \newline \newline & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \cos mx \ dx + \tfrac12 \int_{-\pi}^\pi dx \newline \newline & = & 0 + \pi \ \ = \ \ \pi. \end{array}

int sin · cos; sin, a=ba = b

sinaxcosax=12sin(ax+ax)+12sin(axax)=12sin2ax+0(28a)\tag{28a} \begin{array}{rcl} \sin ax \cos ax & = & \frac12 \sin (ax + ax) + \frac12 \sin (ax - ax) \newline \newline & = & \frac12 \sin 2ax + 0 \end{array}

ππsinaxcosbx dx=12ππsin2ax dx=12ππsinmx dx=0.(28b)\tag{28b} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin ax \cos bx \ dx & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \sin 2ax \ dx \newline \newline & = & \displaystyle \tfrac12 \int_{-\pi}^\pi \sin mx \ dx \newline \newline & = & 0. \end{array}

int sin · sin, cos · cos, sin · cos

ππsinaxsinbx dx={0,abπ,a=b.(29)\tag{29} \int_{-\pi}^\pi \sin ax \sin bx \ dx = \left\{ \begin{array}{rcl} 0, & a \ne b \newline \pi, & a = b. \end{array} \right.

 

ππcosaxcosbx dx={0,abπ,a=b.(30)\tag{30} \int_{-\pi}^\pi \cos ax \cos bx \ dx = \left\{ \begin{array}{rcl} 0, & a \ne b \newline \pi, & a = b. \end{array} \right.

 

ππcosaxsinbx dx=0.(31)\tag{31} \int_{-\pi}^\pi \cos ax \sin bx \ dx = 0.

interval changes

ππsinmx dx=12λ12λsin(m2πλx) dx[1mcosmx]ππ=[λm2πcos(m2πλx)]12λ12λ1m[cosmπcosm(π)]=λm2π[cos(m2πλ)(12λ)cos(m2πλ)(12λ)]=λm2π[cosmπcosm(π)]1m(cosmπcosmπ)=λm2π(cosmπcosmπ)0=0.(32)\tag{32} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin mx \ dx & = & \displaystyle \int_{-\tfrac12 \lambda}^{\tfrac12 \lambda} \sin \left( m\frac{2\pi}{\lambda} x \right) \ dx \newline \newline \displaystyle -\left[ \frac{1}{m} \cos mx \right]^\pi_{-\pi} & = & \displaystyle -\left[ \frac{\lambda}{m2\pi} \cos \left( m \frac{2\pi}{\lambda} x \right) \right]_{-\tfrac12 \lambda}^{\tfrac12 \lambda} \newline \newline \displaystyle \frac{1}{m} [ \cos m \pi - \cos m(-\pi) ] & = & \displaystyle \frac{\lambda}{m2\pi} \left[ \cos \left( m \frac{2\pi}{\lambda} \right) (\tfrac12 \lambda) - \cos \left( m \frac{2\pi}{\lambda} \right) (-\tfrac12 \lambda) \right] \newline \newline & = & \displaystyle \frac{\lambda}{m2\pi} [ \cos m\pi - \cos m(-\pi) ] \newline \newline \displaystyle \frac{1}{m} (\cos m\pi - \cos m\pi) & = & \displaystyle \frac{\lambda}{m2\pi} (\cos m\pi - \cos m\pi) \newline \newline 0 & = & 0. \end{array}

 

ππsinmt dt=12T12Tsin(m2πTt) dt[1mcosmt]ππ=[Tm2πcos(m2πTt)]12T12T1m[cosmπcosm(π)]=Tm2π[cos(m2πT)(12T)cos(m2πT)(12T)]=λm2π[cosmπcosm(π)]1m(cosmπcosmπ)=λm2π(cosmπcosmπ)0=0.(33)\tag{33} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin mt \ dt & = & \displaystyle \int_{-\tfrac12 T}^{\tfrac12 T} \sin \left( m\frac{2\pi}{T} t \right) \ dt \newline \newline \displaystyle -\left[ \frac{1}{m} \cos mt \right]^\pi_{-\pi} & = & \displaystyle -\left[ \frac{T}{m2\pi} \cos \left( m \frac{2\pi}{T} t \right) \right]_{-\tfrac12 T}^{\tfrac12 T} \newline \newline \displaystyle \frac{1}{m} [ \cos m \pi - \cos m(-\pi) ] & = & \displaystyle \frac{T}{m2\pi} \left[ \cos \left( m \frac{2\pi}{T} \right) (\tfrac12 T) - \cos \left( m \frac{2\pi}{T} \right) (-\tfrac12 T) \right] \newline \newline & = & \displaystyle \frac{\lambda}{m2\pi} [ \cos m\pi - \cos m(-\pi) ] \newline \newline \displaystyle \frac{1}{m} (\cos m\pi - \cos m\pi) & = & \displaystyle \frac{\lambda}{m2\pi} (\cos m\pi - \cos m\pi) \newline \newline 0 & = & 0. \end{array}

period

ππsinmx dx=12λ12λsin(m2πλx) dx=0λsin(m2πλx) dx=0λsin(mkx) dx  =  0λsin(kmx) dx(34)\tag{34} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin mx \ dx & = & \displaystyle \int_{-\tfrac12 \lambda}^{\tfrac12 \lambda} \sin \left( m\frac{2\pi}{\lambda} x \right) \ dx \newline \newline & = & \displaystyle \int_0^{\lambda} \sin \left( m\frac{2\pi}{\lambda} x \right) \ dx \newline \newline & = & \displaystyle \int_0^{\lambda} \sin ( m k x ) \ dx \ \ = \ \ \int_0^{\lambda} \sin ( k_m x ) \ dx \end{array}

 

ππsinmt dt=12T12Tsin(m2πTt) dt=0Tsin(m2πTt) dt=0Tsin(mωt) dt  =  0Tsin(ωmt) dt(35)\tag{35} \begin{array}{rcl} \displaystyle \int_{-\pi}^\pi \sin mt \ dt & = & \displaystyle \int_{-\tfrac12 T}^{\tfrac12 T} \sin \left( m\frac{2\pi}{T} t \right) \ dt \newline \newline & = & \displaystyle \int_0^T \sin \left( m\frac{2\pi}{T} t \right) \ dt \newline \newline & = & \displaystyle \int_0^T \sin ( m \omega t ) \ dt \ \ = \ \ \int_0^T \sin ( \omega_m t) \ dt \end{array}

wavenumber and angular requency

km=mk1,    m=1,2,3,..(36)\tag{36} k_m = m k_1, \ \ \ \ m = 1, 2, 3, .. λm=2πkm \lambda_m = \frac{2\pi}{k_m}

 

ωm=mω1,    m=1,2,3,..(37)\tag{37} \omega_m = m \omega_1, \ \ \ \ m = 1, 2, 3, .. Tm=2πωm T_m = \frac{2\pi}{\omega_m}

other forms

f(x)=m=1amcos[m(2πL)x]+m=1bmsin[m(2πL)x]+c0(38)\tag{38} f(x) = \sum_{m=1}^\infty a_m \cos \left[ m \left( \frac{2\pi}{L} \right) x \right] + \sum_{m=1}^\infty b_m \sin \left[ m \left( \frac{2\pi}{L} \right) x \right] + c_0

am=2L0Lf(x) cos[m(2πL)x] dx(39)\tag{39} a_m = \frac{2}{L}\int_0^L f(x) \ \cos \left[ m \left( \frac{2\pi}{L} \right) x \right] \ dx

bm=2L0Lf(x) cos[m(2πL)x] dx(40)\tag{40} b_m = \frac{2}{L}\int_0^L f(x) \ \cos \left[ m \left( \frac{2\pi}{L} \right) x \right] \ dx

c0=1L0Lf(x) dx.(41)\tag{41} c_0 = \frac{1}{L} \int_0^L f(x) \ dx.

f(t)=m=1amcos[m(2πL)t]+m=1bmsin[m(2πL)t]+c0(42)\tag{42} f(t) = \sum_{m=1}^\infty a_m \cos \left[ m \left( \frac{2\pi}{L} \right) t \right] + \sum_{m=1}^\infty b_m \sin \left[ m \left( \frac{2\pi}{L} \right) t \right] + c_0

am=2T0Tf(t) cos[m(2πL)t] dt(43)\tag{43} a_m = \frac{2}{T}\int_0^T f(t) \ \cos \left[ m \left( \frac{2\pi}{L} \right) t \right] \ dt

bm=2T0Tf(t) cos[m(2πL)t] dt(44)\tag{44} b_m = \frac{2}{T}\int_0^T f(t) \ \cos \left[ m \left( \frac{2\pi}{L} \right) t \right] \ dt

c0=1T0Tf(t) dt.(45)\tag{45} c_0 = \frac{1}{T} \int_0^T f(t) \ dt.

 

km=m2πL,    m=1,2,3,..(46)\tag{46} k_m = m \frac{2\pi}{L}, \ \ \ \ m = 1, 2, 3, ..

ωm=m2πT,    m=1,2,3,..(47)\tag{47} \omega_m = m \frac{2\pi}{T}, \ \ \ \ m = 1, 2, 3, ..

Tags: