fourier series short intro
7 mins read ·
Fourier series short intro: Proofs of some integral identities.
- fourier_series_short_intro.pdf
- Intro 3
- Coefficients 7
- Related trigonometric identities 15
- Integral of sine and cosine 19
- Proofs a ≠ b 22
- Proofs a = b 26
- Integral identities 30
- Interval changes 32
- Other forms 38
- Closing 42
int sin
∫−ππsinmx dx====[−m1cosmx]−ππ−m1[cosmπ−cosm(−π)]−m1(cosmπ−cosmπ)0.(21)
int cos
∫−ππcosmx dx====[−m1sinmx]−ππ−m1[sinmπ−sinm(−π)]−m1(sinmπ+sinmπ)−m1(0+0) = 0.(22)
int sin · sin, a=b
sinaxsinbx==21cos(ax−bx)−21cos(ax+bx)21cos(a−b)x−21cos(a+b)x(23a)
∫−ππsinaxsinbx dx===21∫−ππcos(a−b)x dx−21∫−ππcos(a+b)x dx21∫−ππcosnx dx−21∫−ππcosmx dx0−0 = 0.(23b)
int cos · cos; sin, a=b
cosaxcosbx==21cos(ax+bx)+21cos(ax−bx)21cos(a+b)x+21cos(a−b)x(24a)
∫−ππcosaxcosbx dx===21∫−ππcos(a+b)x dx+21∫−ππcos(a−b)x dx21∫−ππcosmx dx+21∫−ππcosnx dx0+0 = 0.(24b)
int sin · cos; sin, a=b
sinaxcosbx==21sin(ax+bx)+21sin(ax−bx)21sin(a+b)x+21sin(a−b)x(25a)
∫−ππsinaxcosbx dx===21∫−ππsin(a+b)x dx+21∫−ππsin(a−b)x dx21∫−ππsinmx dx+21∫−ππsinnx dx0+0 = 0.(25b)
int sin · sin, a=b
sinaxsinax==21cos(ax−ax)−21cos(ax+ax)21−21cos2ax(26a)
∫−ππsinaxsinax dx===21∫−ππdx−21∫−ππcos2ax dx21∫−ππdx−21∫−ππcosmx dxπ−0 = π.(26b)
int cos · cos; sin, a=b
cosaxcosax==21cos(ax+ax)+21cos(ax−ax)21cos2ax+21(27a)
∫−ππcosaxcosbx dx===21∫−ππcos2ax dx+21∫−ππdx21∫−ππcosmx dx+21∫−ππdx0+π = π.(27b)
int sin · cos; sin, a=b
sinaxcosax==21sin(ax+ax)+21sin(ax−ax)21sin2ax+0(28a)
∫−ππsinaxcosbx dx===21∫−ππsin2ax dx21∫−ππsinmx dx0.(28b)
int sin · sin, cos · cos, sin · cos
∫−ππsinaxsinbx dx={0,π,a=ba=b.(29)
∫−ππcosaxcosbx dx={0,π,a=ba=b.(30)
∫−ππcosaxsinbx dx=0.(31)
interval changes
∫−ππsinmx dx−[m1cosmx]−ππm1[cosmπ−cosm(−π)]m1(cosmπ−cosmπ)0======∫−21λ21λsin(mλ2πx) dx−[m2πλcos(mλ2πx)]−21λ21λm2πλ[cos(mλ2π)(21λ)−cos(mλ2π)(−21λ)]m2πλ[cosmπ−cosm(−π)]m2πλ(cosmπ−cosmπ)0.(32)
∫−ππsinmt dt−[m1cosmt]−ππm1[cosmπ−cosm(−π)]m1(cosmπ−cosmπ)0======∫−21T21Tsin(mT2πt) dt−[m2πTcos(mT2πt)]−21T21Tm2πT[cos(mT2π)(21T)−cos(mT2π)(−21T)]m2πλ[cosmπ−cosm(−π)]m2πλ(cosmπ−cosmπ)0.(33)
period
∫−ππsinmx dx===∫−21λ21λsin(mλ2πx) dx∫0λsin(mλ2πx) dx∫0λsin(mkx) dx = ∫0λsin(kmx) dx(34)
∫−ππsinmt dt===∫−21T21Tsin(mT2πt) dt∫0Tsin(mT2πt) dt∫0Tsin(mωt) dt = ∫0Tsin(ωmt) dt(35)
wavenumber and angular requency
km=mk1, m=1,2,3,..(36)
λm=km2π
ωm=mω1, m=1,2,3,..(37)
Tm=ωm2π
f(x)=m=1∑∞amcos[m(L2π)x]+m=1∑∞bmsin[m(L2π)x]+c0(38)
am=L2∫0Lf(x) cos[m(L2π)x] dx(39)
bm=L2∫0Lf(x) cos[m(L2π)x] dx(40)
c0=L1∫0Lf(x) dx.(41)
f(t)=m=1∑∞amcos[m(L2π)t]+m=1∑∞bmsin[m(L2π)t]+c0(42)
am=T2∫0Tf(t) cos[m(L2π)t] dt(43)
bm=T2∫0Tf(t) cos[m(L2π)t] dt(44)
c0=T1∫0Tf(t) dt.(45)
km=mL2π, m=1,2,3,..(46)
ωm=mT2π, m=1,2,3,..(47)