two intervals const a p3

  • Position x(t)={x0+v0(tt0)+12a0(tt0)2,t0t<t1,x1+v1(tt1)+12a1(tt1)2,t1t<t2,(D3)\tag{D3} x(t) = \left\{ \begin{array}{cc} x_0 + v_0(t - t_0) + \tfrac12 a_0(t - t_0)^2, & t_0 \le t < t_1, \\[0.5em] x_1 + v_1(t - t_1) + \tfrac12 a_1(t - t_1)^2, & t_1 \le t < t_2, \end{array} \right. with tn+1=tn+τnt_{n+1} = t_n + \tau_n, where τn\tau_n is nn-th time interval.
  • Initial conditions
    • x(t0)=x0x(t_0) = x_0,
    • x(t1)=x1x(t_1) = x_1 and x(t1)=x0+v0(t1t0)+12a0(t1t0)2x(t_1) = x_0 + v_0(t_1 - t_0) + \tfrac12 a_0(t_1 - t_0)^2.