☰
Prev
Home
Next
two intervals const a p2
Velocity
v
(
t
)
=
{
v
0
+
a
0
(
t
−
t
0
)
,
t
0
≤
t
<
t
1
,
v
1
+
a
1
(
t
−
t
1
)
,
t
1
≤
t
<
t
2
,
(D2)
\tag{D2} v(t) = \left\{ \begin{array}{cc} v_0 + a_0(t - t_0), & t_0 \le t < t_1, \\[0.5em] v_1 + a_1(t - t_1), & t_1 \le t < t_2, \end{array} \right.
v
(
t
)
=
{
v
0
+
a
0
(
t
−
t
0
)
,
v
1
+
a
1
(
t
−
t
1
)
,
t
0
≤
t
<
t
1
,
t
1
≤
t
<
t
2
,
(
D2
)
with
t
n
+
1
=
t
n
+
τ
n
t_{n+1} = t_n + \tau_n
t
n
+
1
=
t
n
+
τ
n
, where
τ
n
\tau_n
τ
n
is
n
n
n
-th time interval.
Initial conditions
v
(
t
0
)
=
v
0
v(t_0) = v_0
v
(
t
0
)
=
v
0
,
v
(
t
1
)
=
v
1
v(t_1) = v_1
v
(
t
1
)
=
v
1
and
v
(
t
1
)
=
v
0
+
a
0
(
t
1
−
t
0
)
v(t_1) = v_0 + a_0(t_1 - t_0)
v
(
t
1
)
=
v
0
+
a
0
(
t
1
−
t
0
)
.