☰
Prev
Home
Next
a v x const a
Acceleration
a
(
t
)
=
a
n
,
t
n
<
t
<
t
n
+
1
.
(C1)
\tag{C1} a(t) = a_n, \ \ \ \ t_n < t < t_{n+1}.
a
(
t
)
=
a
n
,
t
n
<
t
<
t
n
+
1
.
(
C1
)
Velocity
v
(
t
)
=
v
n
+
a
n
(
t
−
t
n
)
,
t
n
≤
t
≤
t
n
+
1
.
(C2)
\tag{C2} v(t) = v_n + a_n(t - t_n), \ \ \ \ t_n \le t \le t_{n+1}.
v
(
t
)
=
v
n
+
a
n
(
t
−
t
n
)
,
t
n
≤
t
≤
t
n
+
1
.
(
C2
)
Posisition
x
(
t
)
=
x
n
+
v
n
(
t
−
t
n
)
+
1
2
a
n
(
t
−
t
n
)
2
,
t
n
≤
t
≤
t
n
+
1
.
(C3)
\tag{C3} x(t) = x_n + v_n(t - t_n) + \tfrac12 a_n(t - t_n)^2, \ \ \ \ t_n \le t \le t_{n+1}.
x
(
t
)
=
x
n
+
v
n
(
t
−
t
n
)
+
2
1
a
n
(
t
−
t
n
)
2
,
t
n
≤
t
≤
t
n
+
1
.
(
C3
)