☰
Prev
Home
Next
int v to x const a
Velocity
v
(
t
)
=
v
n
+
a
(
t
−
t
n
)
,
t
n
≤
t
≤
t
n
+
1
.
(B1)
\tag{B1} v(t) = v_n + a(t - t_n), \ \ \ \ t_n \le t \le t_{n+1}.
v
(
t
)
=
v
n
+
a
(
t
−
t
n
)
,
t
n
≤
t
≤
t
n
+
1
.
(
B1
)
Initial condition
x
(
t
n
)
=
x
n
.
(B2)
\tag{B2} x(t_n) = x_n.
x
(
t
n
)
=
x
n
.
(
B2
)
Posisition
x
(
t
)
=
x
n
+
v
n
(
t
−
t
n
)
+
1
2
a
n
(
t
−
t
n
)
2
,
t
n
≤
t
≤
t
n
+
1
.
(B3)
\tag{B3} x(t) = x_n + v_n(t - t_n) + \tfrac12 a_n(t - t_n)^2, \ \ \ \ t_n \le t \le t_{n+1}.
x
(
t
)
=
x
n
+
v
n
(
t
−
t
n
)
+
2
1
a
n
(
t
−
t
n
)
2
,
t
n
≤
t
≤
t
n
+
1
.
(
B3
)