kinematics, integrate v to x

  • Integrate velocity vv to obtain position xx x(t)x(t0)=t0t[v0+t0τ2a(τ1)dτ1]dτ2.(F1)\tag{F1} x(t) - x(t_0) = \int_{t_0}^t \left[ v_0 + \int_{t_0}^{\tau_2} a(\tau_1) d\tau_1 \right] d\tau_2.
  • Initial condition x(t0)=x0x(t_0) = x_0, will give x(t)=x0+v0(tt0)+t0tt0τ2a(τ1)dτ1dτ2.(F2)\tag{F2} x(t) = x_0 + v_0 (t - t_0) + \int_{t_0}^t \int_{t_0}^{\tau_2} a(\tau_1) d\tau_1 d\tau_2.