futher intro perceptron
Sparisoma Viridi2 mins read ·
Feed forward and learning algorithms as further intro to single-layer perceptron.
Info:
- Further intro to perceptron: Datasets generation, classification, andlearning
- Outline
- Intro 3
- Linear separable dataset generation 6
- Feed forward in single-layer perceptron 23
- Binary classification ability 29
- Decision boundary line 47
- Learning process 60
- Error estimation 76
- Additional topic as intermezzo 91
- Closing 98
Sketch:
f(x)={1,0,x≥0,x<0.(1)
ax+by+c=0.(2)
z1=w11x1+w12x2+b1(3)
y1=fbs(z1)(4)
y1=f[w11w12b1]x1x21(5)
xin+1=yin(6)
xin+1=fn[wijnwijnbin]xjnxjn1(7)
flowchart RL
subgraph n[" "]
S1
A1
end
I1 --"w11"--> S1
I2 --"w12"--> S1
I0 --"b1"--> S1
S1 --> A1 --> O1
O1((y1))
I1((x1))
I2((x2))
I0((1))
A1((fbs))
S1(["Σ wx+b"])
w11x1+w12x2+b=0.(8)
x2=−(w12w11)x1−(w12b).(9)
SSE=i=1∑n(yi−y^i)2.(10)
MCE=n1i=1∑nδ(yi,y^i).(11)
δ(a,b)={10a=b,a=b.(12)
flowchart RL
I1 --"w11"--> H1
I2 --"w12"--> H1
I1 --"w21"--> H2
I2 --"w22"--> H2
H1 --"u11"--> O1
H2 --"u12"--> O1
I1((x1))
I2((x2))
H1(["y1|tanh"])
H2(["y2|tanh"])
O1(["z1|bstep"])