notes

s-2m-1s 1-d rel

Sparisoma Viridi
2 mins read ·

A working note for system of two masses and one spring

m1d2x1dt2=k(x1x2)kl0(1)\tag{1} m_1 \frac{d^2 x_1}{dt^2} = -k(x_1 - x_2) - k l_0

and

m2d2x2dt2=k(x2x1)+kl0,(2)\tag{2} m_2 \frac{d^2 x_2}{dt^2} = -k(x_2 - x_1) + k l_0,

where x3>x2>x1x_3 > x_2 > x_1.

Multiply Eqn (1) with m2m_2 and Eqn (2) with m1m_1 will turn previous equations into

m2m1d2x1dt2=km2(x1x2)km2l0(3)\tag{3} m_2 m_1 \frac{d^2 x_1}{dt^2} = -k m_2 (x_1 - x_2) - k m_2 l_0

and

m1m2d2x2dt2=km1(x2x1)+km1l0.(4)\tag{4} m_1 m_2 \frac{d^2 x_2}{dt^2} = -k m_1 (x_2 - x_1) + k m_1 l_0.

Substract Eqn (4) with Eqn (3) will produce

m2m1d2dt2(x2x1)=k(m1+m2)(x2x1)+k(m1+m2)l0(m2m1m1+m2)d2dt2(x2x1)=k(x2x1)+kl0μd2x21dt2=kx21+kl0μd2(x21+l0)dt2=k(x21l0)d2(x21l0)dt2=(kμ)(x21l0)d2ydt2=ω2y.(5)\tag{5} \begin{array}{rcl} \displaystyle m_2 m_1 \frac{d^2}{dt^2} (x_2 - x_1) & = & -k (m_1 + m_2) (x_2 - x_1) + k (m_1 + m_2) l_0 \newline \newline \displaystyle \left( \frac{m_2 m_1}{m_1 + m_2} \right) \frac{d^2}{dt^2} (x_2 - x_1) & = & -k (x_2 - x_1) + k l_0 \newline \newline \displaystyle \mu \frac{d^2 x_{21}}{dt^2} & = & k x_{21} + k l_0 \newline \newline \displaystyle \mu \frac{d^2 (x_{21} + l_0)}{dt^2} & = & -k(x_{21} - l_0) \newline \newline \displaystyle \frac{d^2 (x_{21} - l_0)}{dt^2} & = & \displaystyle -\left( \frac{k}{\mu} \right) (x_{21} - l_0) \newline \newline \displaystyle \frac{d^2 y}{dt^2} & = & \displaystyle -\omega^2 y. \end{array}

Solution of previous final equation is

y=Asin(ωt+ϕ)x21l0=Asin(ωt+ϕ)x21=l0+Asin(ωt+ϕ),(6) \begin{array}{rcl}\tag{6} y & = & A \sin (\omega t + \phi) \newline \newline x_{21} - l_0 & = & A \sin (\omega t + \phi) \newline \newline x_{21} & = & l_0 + A \sin (\omega t + \phi), \end{array}

with

ω=kμ(7)\tag{7} \omega = \sqrt{\frac{k}{\mu}}

and

μ=m1m2m1+m2,(8)\tag{8} \mu = \frac{m_1 m_2}{m_1 + m_2},

which is known as effective mass 1.


  1. John Alexiou, “Two mass one-spring system natural frequency”, Physics Stack Exchange, 6 May 2016, url https://physics.stackexchange.com/q/254458 [20241008]. ↩︎

Tags: