Thera identities in 1st - 4th quadrants, map sine and cosine function to 1st quadrant.
cos(2π+β)=cosβ(4.Q1.1)
sin(2π+β)=sinβ(4.Q1.2)
cos(21π−β)=sinβ(4.Q1.3)
sin(21π−β)=cosβ(4.Q1.4)
cos(π−β)=−cosβ(4.Q2.1)
sin(π−β)=sinβ(4.Q2.2)
cos(21π+β)=−sinβ(4.Q2.3)
sin(21π+β)=cosβ(4.Q2.4)
cos(π+β)=−cosβ(4.Q3.1)
sin(π+β)=−sinβ(4.Q3.1)
cos(23π−β)=−sinβ(4.Q3.3)
sin(23π−β)=−cosβ(4.Q3.4)
cos(2π−β)=cosβ(4.Q4.1)
sin(2π−β)=−sinβ(4.Q4.1)
cos(23π+β)=sinβ(4.Q4.3)
sin(23π+β)=−cosβ(4.Q4.4)
The two Eqns (4.Q4.1) and (4.Q4.2) also mean that
- cos(−β)=cosβ,
- sin(−β)=−sinβ.
sin 60 = sin (90 - 30) = cos 30
cos120°
Link to heading
cos 120 = cos (180 - 60) = - cos 60
cos 120 = cos (90 + 30) = - sin 30 = - cos 60
cos210°
Link to heading
cos 210 = cos (180 + 30) = - cos 30
cos 210 = cos (270 - 60) = - sin 60 = - cos 30
sin(−330°)
Link to heading
sin(-330) = sin(-360 + 30) = sin(30)
sin(-330) = -sin(330) = -sin(360-30) = sin(30)
sin(-330) = -sin(330) = -sin(270+60) = cos(60)
sin(−150°)
Link to heading
sin (-150) = -sin 150 = -sin (180 - 30) = -sin 30
sin (-150) = -sin 150 = -sin (90 + 60) = -cos 60 = -sin 30
sin (-150) = sin (360-210) = sin (-210) = -sin 210 = -sin (180 + 30) = -sin 30
sin (-150) = sin (360-210) = sin (-210) = -sin 210 = -sin (270-60) = -cos 60 = -sin 30
Test results
sin(-150) = -0.5000
-sin(150) = -0.5000
-sin(180-30) = -0.5000
-sin(30) = -0.5000
-sin(90+60) = -0.5000
-cos(60) = -0.5000
sin(-360+210) = -0.5000
sin(210) = -0.5000
sin(180+30) = -0.5000
sin(270-60) = -0.5000
Python code https://onecompiler.com/python/3zrb5qd5e
import math
def sin(x):
return math.sin(x*math.pi/180);
def cos(x):
return math.cos(x*math.pi/180);
s = [
"sin(-150)",
"-sin(150)",
"-sin(180-30)",
"-sin(30)",
"-sin(90+60)",
"-cos(60)",
"sin(-360+210)",
"sin(210)",
"sin(180+30)",
"sin(270-60)"
]
for e in s:
print(e, "=", f'{eval(e):.4f}')
- Try your own expression, e.g. represent cos(θ+41π) in 2nd, 3rd, and 4th quadrants.