trigonometric identities Link to heading
Thera identities in 1st - 4th quadrants, map sine and cosine function to 1st quadrant.
1st quadrant Link to heading
$$\tag{4.Q1.1} \cos (2\pi + \beta) = \cos \beta $$ $$\tag{4.Q1.2} \sin (2\pi + \beta) = \sin \beta $$ $$\tag{4.Q1.3} \cos (\tfrac12 \pi - \beta) = \sin \beta $$ $$\tag{4.Q1.4} \sin (\tfrac12 \pi - \beta) = \cos \beta $$
2nd quadrant Link to heading
$$\tag{4.Q2.1} \cos (\pi - \beta) = -\cos \beta $$ $$\tag{4.Q2.2} \sin (\pi - \beta) = \sin \beta $$ $$\tag{4.Q2.3} \cos (\tfrac12 \pi + \beta) = -\sin \beta $$ $$\tag{4.Q2.4} \sin (\tfrac12 \pi + \beta) = \cos \beta $$
3rd quadrant Link to heading
$$\tag{4.Q3.1} \cos (\pi + \beta) = -\cos \beta $$ $$\tag{4.Q3.1} \sin (\pi + \beta) = -\sin \beta $$ $$\tag{4.Q3.3} \cos (\tfrac32 \pi - \beta) = -\sin \beta $$ $$\tag{4.Q3.4} \sin (\tfrac32 \pi - \beta) = -\cos \beta $$
4th quadrant Link to heading
$$\tag{4.Q4.1} \cos (2\pi - \beta) = \cos \beta $$ $$\tag{4.Q4.1} \sin (2\pi - \beta) = -\sin \beta $$ $$\tag{4.Q4.3} \cos (\tfrac32 \pi + \beta) = \sin \beta $$ $$\tag{4.Q4.4} \sin (\tfrac32 \pi + \beta) = -\cos \beta $$
The two Eqns (4.Q4.1) and (4.Q4.2) also mean that
- $\cos (-\beta) = \cos \beta$,
- $\sin (-\beta) = -\sin \beta$.
examples Link to heading
$\sin 60 \degree$ Link to heading
sin 60 = sin (90 - 30) = cos 30
$\cos 120 \degree$ Link to heading
cos 120 = cos (180 - 60) = - cos 60
cos 120 = cos (90 + 30) = - sin 30 = - cos 60
$\cos 210 \degree$ Link to heading
cos 210 = cos (180 + 30) = - cos 30
cos 210 = cos (270 - 60) = - sin 60 = - cos 30
$\sin (-330 \degree)$ Link to heading
sin(-330) = sin(-360 + 30) = sin(30)
sin(-330) = -sin(330) = -sin(360-30) = sin(30)
sin(-330) = -sin(330) = -sin(270+60) = cos(60)
$\sin (-150 \degree)$ Link to heading
sin (-150) = -sin 150 = -sin (180 - 30) = -sin 30
sin (-150) = -sin 150 = -sin (90 + 60) = -cos 60 = -sin 30
sin (-150) = sin (360-210) = sin (-210) = -sin 210 = -sin (180 + 30) = -sin 30
sin (-150) = sin (360-210) = sin (-210) = -sin 210 = -sin (270-60) = -cos 60 = -sin 30
Test results
sin(-150) = -0.5000
-sin(150) = -0.5000
-sin(180-30) = -0.5000
-sin(30) = -0.5000
-sin(90+60) = -0.5000
-cos(60) = -0.5000
sin(-360+210) = -0.5000
sin(210) = -0.5000
sin(180+30) = -0.5000
sin(270-60) = -0.5000
Python code https://onecompiler.com/python/3zrb5qd5e
import math
def sin(x):
return math.sin(x*math.pi/180);
def cos(x):
return math.cos(x*math.pi/180);
s = [
"sin(-150)",
"-sin(150)",
"-sin(180-30)",
"-sin(30)",
"-sin(90+60)",
"-cos(60)",
"sin(-360+210)",
"sin(210)",
"sin(180+30)",
"sin(270-60)"
]
for e in s:
print(e, "=", f'{eval(e):.4f}')
challenges Link to heading
- Try your own expression, e.g. represent $\cos (\theta + \tfrac14 \pi)$ in 2nd, 3rd, and 4th quadrants.