simple harmonic motion Link to heading

  • It is periodic motion that is a sinusoidal function of time x(t)=xmsinθ=xmsin(ωt+ϕ).(1)\tag{1} \begin{array}{rcl} x(t) & = & x_m \sin \theta \newline & = & x_m \sin (\omega t + \phi). \end{array}
  • It is solution of an ODE d2xdt2+ω2x=0.(2)\tag{2} \frac{d^2x}{dt^2} + \omega^2 x = 0.

variables Link to heading

  • Each of variables meaning in Eqn (1) are as follow.
    VariableMeaningUnit
    xxdisplacementm
    xmx_mmaximum displacement, amplitudem
    ω\omegaangular frequencyrad/s
    tttimes
    θ\thetaphaserad
    ϕ\phiinitial phase, phase angle, phase constantrad

phase constant Link to heading

  • It shifts the sine or cosine function.
  • For certain ϕs\phi_s and ϕc\phi_c following relation, cos(ωt+ϕc)=sin(ωt+ϕs),(3)\tag{3} \cos (\omega t + \phi_c) = \sin (\omega t + \phi_s), will hold.
  • Use trigonometric identities to relate ϕs\phi_s and ϕc\phi_c as in sin cos 4 quadrants.