direction Link to heading

  • Sign in to MathWorks at https://matlab.mathworks.com/.
  • Notice available hours for MATLAB Online (basic).
  • Open MATLAB Online (basic).
  • Create New Script.
  • Press CTRL+S to save.
  • Give a name for the empty file about to be saved, e.g. plot_color_marker_line.m.
  • Click Save button.
  • Start to write the code.
  • Run the code.
  • Save figure as PDF.
  • Download it to local folder.
  • Upload it to https://cloudconvert.com/pdf-to-svg.
  • Convert it to PDF.
  • Download SVG file.

code Link to heading

% create empty arrays
x1 = []; y1 = [];
x2 = []; y2 = [];
x3 = []; y3 = [];
x4 = []; y4 = [];
x5 = []; y5 = [];
x6 = []; y6 = [];

% initial and incremental values
x = 0;
dx = 0.25;

% generate data
while x <= 10
    % data 1
    if 0 <= x & x <= 2
        x1 = [x1 x];
        f1 = x^2;
        y1 = [y1 f1];
    end

    % data 2
    if 2 <= x & x <= 3
        x2 = [x2 x];
        f2 = 4 * (x - 2) + 4;
        y2 = [y2 f2];
    end

    % data 3
    if 3 <= x & x <= 5
        x3 = [x3 x];
        f3 = 12 - (x - 5)^2;
        y3 = [y3 f3];
    end
    
    % data 4
    if 5 <= x & x <= 6
        x4 = [x4 x];
        f4 = 12;
        y4 = [y4 f4];
    end

    % data 5
    if 6 <= x & x <= 8
        x5 = [x5 x];
        f5 = 12 - (x - 6)^2;
        y5 = [y5 f5];
    end
    
    % data 6
    if 8 <= x & x <= 10
        x6 = [x6 x];
        f6 = 6 + 2*(x - 9)^2;
        y6 = [y6 f6];
    end
    
    x = x + dx;
end

% plot results
plot( ...
    x1, y1, '-or', ...
    x2, y2, '-*g', ...
    x3, y3, '-sb', ...
    x4, y4, '-+m', ...
    x5, y5, '-dk', ...
    x6, y6, '-xc' ...
);
grid on;
xlabel("x");
ylabel("y");

 

0246810x024681012y

linespec Link to heading

LineSpecLineMarkerColor
-or-or red
-*g-* *g green
-sb-sb blue
-+m-+ +m magenta
-dk-dk black
-xc-x ×c cyan

equations Link to heading

  • For $0 \le x \le 2$ $$\tag{1} y = x^2. $$

    % data 1
    if 0 <= x & x <= 2
        x1 = [x1 x];
        f1 = x^2;
        y1 = [y1 f1];
    end
    
  • For $2 \le x \le 3$ $$\tag{2} y = 4(x-2) + 4. $$

    % data 2
    if 2 <= x & x <= 3
        x2 = [x2 x];
        f2 = 4 * (x - 2) + 4;
        y2 = [y2 f2];
    end
    
  • For $3 \le x \le 5$ $$\tag{3} y = 12 - (x - 5)^2. $$

    % data 3
    if 3 <= x & x <= 5
        x3 = [x3 x];
        f3 = 12 - (x - 5)^2;
        y3 = [y3 f3];
    end
    
  • For $5 \le x \le 6$ $$\tag{4} y = 12. $$

    % data 4
    if 5 <= x & x <= 6
        x4 = [x4 x];
        f4 = 12;
        y4 = [y4 f4];
    end
    
  • For $6 \le x \le 8$ $$\tag{5} y = 12 - (x - 6)^2. $$

    % data 5
    if 6 <= x & x <= 8
        x5 = [x5 x];
        f5 = 12 - (x - 6)^2;
        y5 = [y5 f5];
    end
    
  • For $8 \le x \le 10$ $$\tag{6} y = 6 + 2(x - 9)^2. $$

    % data 6
    if 8 <= x & x <= 10
        x6 = [x6 x];
        f6 = 6 + 2*(x - 9)^2;
        y6 = [y6 f6];
    end
    
  • And for all ranges

$$\tag{7} y = \left\{ \begin{array}{cc} x^2, & 0 \le x \le 2, \newline 4(x-2) + 4, & 2 \le x \le 3, \newline 12 - (x - 5)^2, & 3 \le x \le 5, \newline 12, & 5 \le x \le 6, \newline 12 - (x - 6)^2, & 6 \le x \le 8, \newline 6 + 2(x - 9)^2, & 8 \le x \le 10. \end{array} \right. $$