direction Link to heading
- Sign in to MathWorks at https://matlab.mathworks.com/.
- Notice available hours for MATLAB Online (basic).
- Open MATLAB Online (basic).
- Create New Script.
- Press CTRL+S to save.
- Give a name for the empty file about to be saved, e.g.
plot_color_marker_line.m
. - Click Save button.
- Start to write the code.
- Run the code.
- Save figure as PDF.
- Download it to local folder.
- Upload it to https://cloudconvert.com/pdf-to-svg.
- Convert it to PDF.
- Download SVG file.
code Link to heading
% create empty arrays
x1 = []; y1 = [];
x2 = []; y2 = [];
x3 = []; y3 = [];
x4 = []; y4 = [];
x5 = []; y5 = [];
x6 = []; y6 = [];
% initial and incremental values
x = 0;
dx = 0.25;
% generate data
while x <= 10
% data 1
if 0 <= x & x <= 2
x1 = [x1 x];
f1 = x^2;
y1 = [y1 f1];
end
% data 2
if 2 <= x & x <= 3
x2 = [x2 x];
f2 = 4 * (x - 2) + 4;
y2 = [y2 f2];
end
% data 3
if 3 <= x & x <= 5
x3 = [x3 x];
f3 = 12 - (x - 5)^2;
y3 = [y3 f3];
end
% data 4
if 5 <= x & x <= 6
x4 = [x4 x];
f4 = 12;
y4 = [y4 f4];
end
% data 5
if 6 <= x & x <= 8
x5 = [x5 x];
f5 = 12 - (x - 6)^2;
y5 = [y5 f5];
end
% data 6
if 8 <= x & x <= 10
x6 = [x6 x];
f6 = 6 + 2*(x - 9)^2;
y6 = [y6 f6];
end
x = x + dx;
end
% plot results
plot( ...
x1, y1, '-or', ...
x2, y2, '-*g', ...
x3, y3, '-sb', ...
x4, y4, '-+m', ...
x5, y5, '-dk', ...
x6, y6, '-xc' ...
);
grid on;
xlabel("x");
ylabel("y");
linespec Link to heading
LineSpec | Line | Marker | Color |
---|---|---|---|
-or | - | o ○ | r red |
-*g | - | * * | g green |
-sb | - | s □ | b blue |
-+m | - | + + | m magenta |
-dk | - | d ◇ | k black |
-xc | - | x × | c cyan |
equations Link to heading
For $0 \le x \le 2$ $$\tag{1} y = x^2. $$
% data 1 if 0 <= x & x <= 2 x1 = [x1 x]; f1 = x^2; y1 = [y1 f1]; end
For $2 \le x \le 3$ $$\tag{2} y = 4(x-2) + 4. $$
% data 2 if 2 <= x & x <= 3 x2 = [x2 x]; f2 = 4 * (x - 2) + 4; y2 = [y2 f2]; end
For $3 \le x \le 5$ $$\tag{3} y = 12 - (x - 5)^2. $$
% data 3 if 3 <= x & x <= 5 x3 = [x3 x]; f3 = 12 - (x - 5)^2; y3 = [y3 f3]; end
For $5 \le x \le 6$ $$\tag{4} y = 12. $$
% data 4 if 5 <= x & x <= 6 x4 = [x4 x]; f4 = 12; y4 = [y4 f4]; end
For $6 \le x \le 8$ $$\tag{5} y = 12 - (x - 6)^2. $$
% data 5 if 6 <= x & x <= 8 x5 = [x5 x]; f5 = 12 - (x - 6)^2; y5 = [y5 f5]; end
For $8 \le x \le 10$ $$\tag{6} y = 6 + 2(x - 9)^2. $$
% data 6 if 8 <= x & x <= 10 x6 = [x6 x]; f6 = 6 + 2*(x - 9)^2; y6 = [y6 f6]; end
And for all ranges
$$\tag{7} y = \left\{ \begin{array}{cc} x^2, & 0 \le x \le 2, \newline 4(x-2) + 4, & 2 \le x \le 3, \newline 12 - (x - 5)^2, & 3 \le x \le 5, \newline 12, & 5 \le x \le 6, \newline 12 - (x - 6)^2, & 6 \le x \le 8, \newline 6 + 2(x - 9)^2, & 8 \le x \le 10. \end{array} \right. $$