Copyright © 2018 John Wiley & Sons, Inc. and primarily advanced by Prof. A. Iskandar.

3-1 Vectors and Their Components (1 of 15) Link to heading

Learning Objectives

  • 3.01 Add vectors by drawing them in head-to-tail arrangements, applying the commutative and associative laws.
  • 3.02 Subtract a vector from a second one.
  • 3.03 Calculate the components of a vector on a given coordinate system, showing them in a drawing.
  • 3.04 Given the components of a vector, draw the vector and determine its magnitude and orientation.
  • 3.05 Convert angle measures between degrees and radians.

3-1 Vectors and Their Components (2 of 15) Link to heading

  • Physics deals with quantities that have both size and direction
  • A vector is a mathematical object with size and direction
  • A vector quantity is a quantity that can be represented by a vector
    • Examples: position, velocity, acceleration
    • Vectors have their own rules for manipulation
  • A scalar is a quantity that does not have a direction
    • Examples: time, temperature, energy, mass
    • Scalars are manipulated with ordinary algebra

3-1 Vectors and Their Components (3 of 15) Link to heading

  • The simplest example is a displacement vector
  • If a particle changes position from A to B, we represent this by a vector arrow pointing from A to B.

Gambar (a) tiga vector A –> B, A’ –> B’ dan A" –> B" dengan arah dan besar yang sama, akan tetapi posisi A, A’, A" dan B, B’, B" tidak berhimpit.

Gambar (b) Vector A –> melalui path berbeda: langsung (merah), hurus s (kelabu biru), setengah lingkaran dan s (merah muda keputihan)

Figure 3-1

  • In (a) we see that all three arrows have the same magnitude and direction: they are identical displacement vectors.
  • In (b) we see that all three paths correspond to the same displacement vector. The vector tells us nothing about the actual path that was taken between A and B.

3-1 Vectors and Their Components (4 of 15) Link to heading

  • The vector sum, or resultant
    • Is the result of performing vector addition
    • Represents the net displacement of two or more displacement vectors s=a+b,(3-1)\tag{3-1} \vec{s} = \vec{a} + \vec{b},
    • Can be added graphically as shown:

3-1 Vectors and Their Components (5 of 15) Link to heading

Gambar (a) Vector A –> B Actual path rounded zigzag, vector B –> C, vector A –> C Net displacement is vector sum.

Gambar (b) a\vec{a}, b\vec{b}, c\vec{c}, To add a\vec{a} and b\vec{b} drawm them head to tail. This is the resulting vector, from tail of a\vec{a} to head of b\vec{b}.

Figure 3-2

3-1 Vectors and Their Components (6 of 15) Link to heading

  • Vector addition is commutative
    • We can add vectors in any order a+b=b+a(3-2)\tag{3-2} \vec{a} + \vec{b} = \vec{b} + \vec{a} (commutative law).

Gambar a\vec{a} ke kanan atas, disambung b\vec{b} ke kanan bawah; b\vec{b} ke kanan bawah, disambung a\vec{a} ke kanan atas; resultannya mendatar, Start –> Finish dengan catatan di atas garisnya a+b\vec{a} + \vec{b} dan di bawah garisnya b+a\vec{b} + \vec{a}.

Keterangan: You get the same vector result for either order of adding vectors.

Figure 3-3

3-1 Vectors and Their Components (7 of 15) Link to heading

  • Vector addition is associative
    • We can group vector addition however we like (a+b)+c=a+(b+c)(3-3)\tag{3-3} (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) (associative law).

Keterangan: You get the same vector result for any order of adding vectors.

Gambar kiri: resultan a+(b+c)\vec{a} + (\vec{b} + \vec{c}) ke kanan bawah, a\vec{a} ke kanan atas, tegak ke bawah b+c\vec{b} + \vec{c}.

Gambar tengah: a\vec{a} kanan atas, b\vec{b} kanan bawah, keduanya bersatu dengan a+b\vec{a} + \vec{b}, c\vec{c} ke kiri bawah, resultannya a+b+c\vec{a} + \vec{b} + \vec{c} ke kanan bawah, tegak ke atas b+c\vec{b} + \vec{c}.

Gambar kanan: ke kanan atas a+b\vec{a} + \vec{b}, ke kiri bawah c\vec{c}, dan resultannya (a+b)+c(\vec{a} + \vec{b}) + \vec{c}.

3-1 Vectors and Their Components (8 of 15) Link to heading

  • A negative sign reverses vector direction
    $$\vec{b} + (-\ve{b}) = 0.
  • We use this to define vector substraction d=ab=a+(b)(3-4)\tag{3-4} \vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})

Gambar vector b\vec{b} dan b-\vec{b}, sejajar tetapi berlawanan arahnya.

Figure (3-5)

Gmabar (a) vektor a\vec{a} dan b\vec{b}, b-\vec{b}.

Gambar (b) vektor a\vec{a} dan b\vec{b}, resultannya d=ab\vec{d} = \vec{a} - \vec{b}.

Note head-to-tail arrangement for addition (of a\vec{a} with b-\vec{b}).

Figure (3-6)

3-1 Vectors and Their Components (9 of 15) Link to heading

  • These rules hold for all vectors, whether they represent displacement, velocity, etc.
  • Only vectors of the same kind can be added
    • (distance) + (distance) makes sense
    • (distance) + (velocity) does not

3-1 Vectors and Their Components (10 of 15) Link to heading

Checkpoint 1
The magnitudes of displacements a\vec{a} and b\vec{b} are 3 m and 4 m, respectively, and c=a+b\vec{c} = \vec{a} + \vec{b}. Considering various orientations of a\vec{a} and b\vec{b}, what are (a) the maximum possible magnitude for c\vec{c} and (b) the minimum possible magnitude?

Answer:
(a) 3 m + 4 m = 7 m
(b) 4 m − 3 m = 1 m

3-1 Vectors and Their Components (11 of 15) Link to heading

  • Rather than using a graphical method, vectors can be added by components o A component is the projection of a vector on an axis
    • The process of finding components is called resolving the vector
  • The components of a vector can be positive or negative.
  • They are unchanged if the vector is shifted in any direction (but not rotated).

Gambar vector b=(7 x^5 y^) m\vec{b} = (7 \ \hat{x} - 5 \ \hat{y}) \ {\rm m}, digambarkan komponen-komponennya bxb_x pada arah xx dan byb_y pada arah yy, “This is the xx component of the vector.”, “This is the yy component of the vector.”, kedua sumbu dengan satuan m, grid kotak berukuran 1 m × 1 m.

Figure (3-8)

3-1 Vectors and Their Components (12 of 15) Link to heading

  • Components in two dimensions can be found by: ax=acosθ,    and    ay=asinθ,(3-5)\tag{3-5} a_x = a \cos \theta, \ \ \ \ {\rm and} \ \ \ \ a_y = a \sin \theta,
  • Where θθ is the angle the vector makes with the positive xx axis, and a is the vector length
  • The length and angle can also be found if the components are known a=ax2+ay2    and    tanθ=ayax(3-6)\tag{3-6} a = \sqrt{a_x^2 + a_y^2} \ \ \ \ {\rm and} \ \ \ \ \tan \theta = \frac{a_y}{a_x}
  • Therefore, components fully define a vector

3-1 Vectors and Their Components (13 of 15) Link to heading

  • In the three-dimensional case we need more components to specify a vector
    • (a,θ,ϕ)(a, \theta, \phi) or (ax,ay,az)(a_x, a_y, a_z)

3-1 Vectors and Their Components (14 of 15) Link to heading

Checkpoint 2
In the figure, which of the indicated methods for combining the xx and yy components of vector aԦ are proper to determine that vector?

Gambar vektor-vektor selalu membentuk segitiga

(a) ax<0a_x < 0, ay<0a_y < 0, vektro aa SE. (ax, ay from origin)

(b) ax<0a_x < 0, ay<0a_y < 0, vektro aa NW. (ax, ay from origin)

(c) ax<0a_x < 0, ay<0a_y < 0, vektro aa SW. (left then down)

(d) ax<0a_x < 0, ay<0a_y < 0, vektro aa SW. (down then left)

(e) ax<0a_x < 0, ay<0a_y < 0, vektro aa NE. (left then down)

(e) ax<0a_x < 0, ay<0a_y < 0, vektro aa SW. (all from origin)

Answer: choices (c), (d), and (f) show the components properly arranged to form the vector

3-1 Vectors and Their Components (15 of 15) Link to heading

  • Angles may be measured in degrees or radians
  • Recall that a full circle is 360 °, or 2 π\pi rad 40° 2π rad360°=0.70 rad 40 \degree \ \frac{2\pi \ {\rm rad}}{360 \degree} = 0.70 \ {\rm rad}
  • Know the three basic trigonometric functions

Gambar segitiga sikus-siku tegak: Sudut di kaki kiri (θ\theta), bidang miring (Hypotenuse), alas (Leg adjacent to θ\theta), tinggi (Leg opposite θ\theta)

sinθ=leg opposite θhypotenuse \sin \theta = \frac{\rm leg \ opposite \ \theta}{\rm hypotenuse}

cosθ=leg adjacent θhypotenuse \cos \theta = \frac{\rm leg \ adjacent \ \theta}{\rm hypotenuse}

tanθ=leg opposite θleg adjacent θ \tan \theta = \frac{\rm leg \ opposite \ \theta}{\rm leg \ adjacent \ \theta}

Figure (3-11)