Copyright © 2018 John Wiley & Sons, Inc. and primarily advanced by Prof. A. Iskandar.

3-1 Vectors and Their Components (1 of 15) Link to heading

Learning Objectives

  • 3.01 Add vectors by drawing them in head-to-tail arrangements, applying the commutative and associative laws.
  • 3.02 Subtract a vector from a second one.
  • 3.03 Calculate the components of a vector on a given coordinate system, showing them in a drawing.
  • 3.04 Given the components of a vector, draw the vector and determine its magnitude and orientation.
  • 3.05 Convert angle measures between degrees and radians.

3-1 Vectors and Their Components (2 of 15) Link to heading

  • Physics deals with quantities that have both size and direction
  • A vector is a mathematical object with size and direction
  • A vector quantity is a quantity that can be represented by a vector
    • Examples: position, velocity, acceleration
    • Vectors have their own rules for manipulation
  • A scalar is a quantity that does not have a direction
    • Examples: time, temperature, energy, mass
    • Scalars are manipulated with ordinary algebra

3-1 Vectors and Their Components (3 of 15) Link to heading

  • The simplest example is a displacement vector
  • If a particle changes position from A to B, we represent this by a vector arrow pointing from A to B.

Gambar (a) tiga vector A –> B, A’ –> B’ dan A" –> B" dengan arah dan besar yang sama, akan tetapi posisi A, A’, A" dan B, B’, B" tidak berhimpit.

Gambar (b) Vector A –> melalui path berbeda: langsung (merah), hurus s (kelabu biru), setengah lingkaran dan s (merah muda keputihan)

Figure 3-1

  • In (a) we see that all three arrows have the same magnitude and direction: they are identical displacement vectors.
  • In (b) we see that all three paths correspond to the same displacement vector. The vector tells us nothing about the actual path that was taken between A and B.

3-1 Vectors and Their Components (4 of 15) Link to heading

  • The vector sum, or resultant
    • Is the result of performing vector addition
    • Represents the net displacement of two or more displacement vectors $$\tag{3-1} \vec{s} = \vec{a} + \vec{b}, $$
    • Can be added graphically as shown:

3-1 Vectors and Their Components (5 of 15) Link to heading

Gambar (a) Vector A –> B Actual path rounded zigzag, vector B –> C, vector A –> C Net displacement is vector sum.

Gambar (b) $\vec{a}$, $\vec{b}$, $\vec{c}$, To add $\vec{a}$ and $\vec{b}$ drawm them head to tail. This is the resulting vector, from tail of $\vec{a}$ to head of $\vec{b}$.

Figure 3-2

3-1 Vectors and Their Components (6 of 15) Link to heading

  • Vector addition is commutative
    • We can add vectors in any order $$\tag{3-2} \vec{a} + \vec{b} = \vec{b} + \vec{a} $$ (commutative law).

Gambar $\vec{a}$ ke kanan atas, disambung $\vec{b}$ ke kanan bawah; $\vec{b}$ ke kanan bawah, disambung $\vec{a}$ ke kanan atas; resultannya mendatar, Start –> Finish dengan catatan di atas garisnya $\vec{a} + \vec{b}$ dan di bawah garisnya $\vec{b} + \vec{a}$.

Keterangan: You get the same vector result for either order of adding vectors.

Figure 3-3

3-1 Vectors and Their Components (7 of 15) Link to heading

  • Vector addition is associative
    • We can group vector addition however we like $$\tag{3-3} (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) $$ (associative law).

Keterangan: You get the same vector result for any order of adding vectors.

Gambar kiri: resultan $\vec{a} + (\vec{b} + \vec{c})$ ke kanan bawah, $\vec{a}$ ke kanan atas, tegak ke bawah $\vec{b} + \vec{c}$.

Gambar tengah: $\vec{a}$ kanan atas, $\vec{b}$ kanan bawah, keduanya bersatu dengan $\vec{a} + \vec{b}$, $\vec{c}$ ke kiri bawah, resultannya $\vec{a} + \vec{b} + \vec{c}$ ke kanan bawah, tegak ke atas $\vec{b} + \vec{c}$.

Gambar kanan: ke kanan atas $\vec{a} + \vec{b}$, ke kiri bawah $\vec{c}$, dan resultannya $(\vec{a} + \vec{b}) + \vec{c}$.

3-1 Vectors and Their Components (8 of 15) Link to heading

  • A negative sign reverses vector direction
    $$\vec{b} + (-\ve{b}) = 0.
  • We use this to define vector substraction $$\tag{3-4} \vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) $$

Gambar vector $\vec{b}$ dan $-\vec{b}$, sejajar tetapi berlawanan arahnya.

Figure (3-5)

Gmabar (a) vektor $\vec{a}$ dan $\vec{b}$, $-\vec{b}$.

Gambar (b) vektor $\vec{a}$ dan $\vec{b}$, resultannya $\vec{d} = \vec{a} - \vec{b}$.

Note head-to-tail arrangement for addition (of $\vec{a}$ with $-\vec{b}$).

Figure (3-6)

3-1 Vectors and Their Components (9 of 15) Link to heading

  • These rules hold for all vectors, whether they represent displacement, velocity, etc.
  • Only vectors of the same kind can be added
    • (distance) + (distance) makes sense
    • (distance) + (velocity) does not

3-1 Vectors and Their Components (10 of 15) Link to heading

Checkpoint 1
The magnitudes of displacements $\vec{a}$ and $\vec{b}$ are 3 m and 4 m, respectively, and $\vec{c} = \vec{a} + \vec{b}$. Considering various orientations of $\vec{a}$ and $\vec{b}$, what are (a) the maximum possible magnitude for $\vec{c}$ and (b) the minimum possible magnitude?

Answer:
(a) 3 m + 4 m = 7 m
(b) 4 m − 3 m = 1 m

3-1 Vectors and Their Components (11 of 15) Link to heading

  • Rather than using a graphical method, vectors can be added by components o A component is the projection of a vector on an axis
    • The process of finding components is called resolving the vector
  • The components of a vector can be positive or negative.
  • They are unchanged if the vector is shifted in any direction (but not rotated).

Gambar vector $\vec{b} = (7 \ \hat{x} - 5 \ \hat{y}) \ {\rm m}$, digambarkan komponen-komponennya $b_x$ pada arah $x$ dan $b_y$ pada arah $y$, “This is the $x$ component of the vector.”, “This is the $y$ component of the vector.”, kedua sumbu dengan satuan m, grid kotak berukuran 1 m × 1 m.

Figure (3-8)

3-1 Vectors and Their Components (12 of 15) Link to heading

  • Components in two dimensions can be found by: $$\tag{3-5} a_x = a \cos \theta, \ \ \ \ {\rm and} \ \ \ \ a_y = a \sin \theta, $$
  • Where $θ$ is the angle the vector makes with the positive $x$ axis, and a is the vector length
  • The length and angle can also be found if the components are known $$\tag{3-6} a = \sqrt{a_x^2 + a_y^2} \ \ \ \ {\rm and} \ \ \ \ \tan \theta = \frac{a_y}{a_x} $$
  • Therefore, components fully define a vector

3-1 Vectors and Their Components (13 of 15) Link to heading

  • In the three-dimensional case we need more components to specify a vector
    • $(a, \theta, \phi)$ or $(a_x, a_y, a_z)$

3-1 Vectors and Their Components (14 of 15) Link to heading

Checkpoint 2
In the figure, which of the indicated methods for combining the $x$ and $y$ components of vector aԦ are proper to determine that vector?

Gambar vektor-vektor selalu membentuk segitiga

(a) $a_x < 0$, $a_y < 0$, vektro $a$ SE. (ax, ay from origin)

(b) $a_x < 0$, $a_y < 0$, vektro $a$ NW. (ax, ay from origin)

(c) $a_x < 0$, $a_y < 0$, vektro $a$ SW. (left then down)

(d) $a_x < 0$, $a_y < 0$, vektro $a$ SW. (down then left)

(e) $a_x < 0$, $a_y < 0$, vektro $a$ NE. (left then down)

(e) $a_x < 0$, $a_y < 0$, vektro $a$ SW. (all from origin)

Answer: choices (c), (d), and (f) show the components properly arranged to form the vector

3-1 Vectors and Their Components (15 of 15) Link to heading

  • Angles may be measured in degrees or radians
  • Recall that a full circle is 360 °, or 2 $\pi$ rad $$ 40 \degree \ \frac{2\pi \ {\rm rad}}{360 \degree} = 0.70 \ {\rm rad} $$
  • Know the three basic trigonometric functions

Gambar segitiga sikus-siku tegak: Sudut di kaki kiri ($\theta$), bidang miring (Hypotenuse), alas (Leg adjacent to $\theta$), tinggi (Leg opposite $\theta$)

$$ \sin \theta = \frac{\rm leg \ opposite \ \theta}{\rm hypotenuse} $$

$$ \cos \theta = \frac{\rm leg \ adjacent \ \theta}{\rm hypotenuse} $$

$$ \tan \theta = \frac{\rm leg \ opposite \ \theta}{\rm leg \ adjacent \ \theta} $$

Figure (3-11)