butiran

vib 1-d grains

· 3 mins read
  • 05-sep-2025 25i20.01 Initial discussion and sketcth.

notes

  • Source of the disturbance is a vibrator, which make the grains oscillating 1.
  • Problem when aligning grouped objects in Word and solution with Inkscape 2.
  • Inkscape installation for creating the figures 3.
  • Sections eqns-a – eqns-e on 05-sep-2025.
  • There is a color scheme for showing Mermaid code on 25i25 .

eqns-a

  • max function $$\tag{1} \max(a, b) = \left\{ \begin{array}{rc} a, & a \ge b, \newline b, & a < b. \end{array} \right. $$
  • sign function $$\tag{2} {\rm sign(x)} = \left\{ \begin{array}{rc} 1, & x > 0, \newline 0, & x = 0, \newline -1, & x < 0. \end{array} \right. $$

egns-b

  • Weight of particle $i$ is 4 $$\tag{3} \vec{W}_{i} = m_i \vec{g}, $$ with $g$ is gravitational acceleration.

egns-c

  • Base particle has mass $m_0$, radius $R_0$, vertical position $z_0$.
  • Relative position of particle $i$ from particle $j$ is $$\tag{4} \vec{r}_{ij} = \vec{r}_i - \vec{r}_j. $$
  • Relative distance of particle $i$ from particle $j$ is $$\tag{5} r_{ij} = |\vec{r}_{ij}|. $$
  • Unit verctor of relative position is $$\tag{6} \hat{r}_{ij} = \frac{\vec{r} _{ij}}{r _{ij}}. $$
  • Overlap between to adjacent particles is $$\tag{7} \xi_{ij} = \max(0, R_i + R_j - r_{ij}). $$
  • Time derivative of overlap is $$\tag{8} \dot{\xi} _{ij} = - v _{ij} \ {\rm sign}(\xi _{ij}). $$
  • Normal force on particle $i$ due to contact with particle $j$ is $$\tag{9} \vec{N}_{ij} = k_N \xi _{ij} \hat{r} _{ij} - \gamma_N \dot{\xi} _{ij} \hat{v} _{ij}. $$

egns-d

  • Number of particles is $n$.
  • Index of particle is from 1 to $n$.
  • Base or particle with index 0 is not considered as particle.
  • Net external force on particle $i$ is $$\tag{10} \vec{F}_i = \left\{ \begin{array}{rc} \vec{N} _{i, i-1} + \vec{N} _{i, i+1} + \vec{W}_i, & 0 < i < n, \newline \vec{N} _{i, i-1} + \vec{W}_i, & i = n. \end{array} \right. $$

eqns-e

  • Newton’s second law is 5 $$\tag{11} \vec{a}_i = \frac{\vec{F}_i}{m_i} $$ for partile $i$ at time $t$.
  • Euler integration for calculating velocity from acceleration 6 gives $$\tag{12} \vec{v}_i(t + \Delta t) = \vec{v}_i(t) + \vec{a}_i \Delta t. $$
  • With similar way, position is obtained from velocity using $$\tag{13} \vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \vec{v}_i(t) \Delta t. $$
  • New position, which is $$\tag{14} \vec{r}_i \equiv \vec{r}_i(t), $$ will update Eqns (4)-(10).

flowchart

A proposed simulation pipeline is as follow.

flowchart LR; %% - B --> I1 --> I2; I2 --> P1 --> P2 --> P3 --> O1; O1 --> O2 --> E; %% def B(["Begin"]); I1[/"n, [m, r]"/]; I2[/"kN, γN, g"/]; P1["N, W, F"]; P2["a, v, r"]; P3["Process"]; O1[/"n, [m, r]"/]; O2[/"E, T, f"/]; E(["End"]);

refs


  1. GPT-5, “Vibration vs Oscillation”, ChatGPT, 5 Sep 2025, url https://chatgpt.com/share/68ba7e12-7344-800a-9a49-62a2d1bc0ca6 [20250905]. ↩︎

  2. GPT-5, “Word alignment issue and using Inkscape”, ChatGPT, 5 Sep 2025, url https://chatgpt.com/share/68ba9d32-2ee8-800a-ba00-490b193ffcf7 [20250905]. ↩︎

  3. Sparisoma Viridi, “Install (again) Inkscape on Windows 11: After can not aligned grouped objects inside Word”, Medium, 5 Sep 2025, url https://medium.com/p/11-f84c4693fb1c [20250905]. ↩︎

  4. GPT-5, “Gravitational force explanation”, ChatGPT, 5 Sep 2025, url https://chatgpt.com/share/68bad021-df00-800a-b1ef-0b95e55fc9dc [20250905]. ↩︎

  5. OpenStax, “Newton’s Second Law”, Physics 201, Joliet Junior College, 18 Jun 2019, url https://phys.libretexts.org/@go/page/18158 [20250905]. ↩︎

  6. Ahmad Moussa, “Euler and Verlet Integration for Particle Physics”, Gorrilla Sun, 3 Aug 2023, url https://www.gorillasun.de/blog/euler-and-verlet-integration-for-particle-physics/ [20250905]. ↩︎