Motion of Simple Pendulum

Using the small angle approximation

sinθθ(1)\tag{1} \sin\theta \approx \theta

equation of motion of a simple pendulum is reduced to

d2θdt2+gLθ=0,(2)\tag{2} \frac{d^2 \theta}{dt^2} + \frac{g}{L} \theta = 0,

which gives the simple harmonic solution

θ(t)=θAsin(ωt+φ0)(3)\tag{3} \theta(t) = \theta_A \sin (\omega t + \varphi_0)

that describes the angular motion of the pendulum, where

ω=gL(4)\tag{4} \omega = \sqrt{\frac{g}{L}}

is the angular frequency of the oscillation.